skip to main content


Search for: All records

Creators/Authors contains: "González, M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available October 1, 2024
  2. Context. Among the most central open questions regarding the initial mass function (IMF) of stars is the impact of environment on the shape of the core mass function (CMF) and thus potentially on the IMF. Aims. The ALMA-IMF Large Program aims to investigate the variations in the core distributions (CMF and mass segregation) with cloud characteristics, such as the density and kinematic of the gas, as diagnostic observables of the formation process and evolution of clouds. The present study focuses on the W43-MM2&MM3 mini-starburst, whose CMF has recently been found to be top-heavy with respect to the Salpeter slope of the canonical IMF. Methods. W43-MM2&MM3 is a useful test case for environmental studies because it harbors a rich cluster that contains a statistically significant number of cores (specifically, 205 cores), which was previously characterized in Paper III. We applied a multi-scale decomposition technique to the ALMA 1.3 mm and 3 mm continuum images of W43-MM2&MM3 to define six subregions, each 0.5–1 pc in size. For each subregion we characterized the probability distribution function of the high column density gas, η -PDF, using the 1.3 mm images. Using the core catalog, we investigate correlations between the CMF and cloud and core properties, such as the η -PDF and the core mass segregation. Results. We classify the W43-MM2&MM3 subregions into different stages of evolution, from quiescent to burst to post-burst, based on the surface number density of cores, number of outflows, and ultra-compact HII presence. The high-mass end (>1 M ⊙ ) of the subregion CMFs varies from close to the Salpeter slope (quiescent) to top-heavy (burst and post-burst). Moreover, the second tail of the η -PDF varies from steep (quiescent) to flat (burst and post-burst), as observed for high-mass star-forming clouds. We find that subregions with flat second η -PDF tails display top-heavy CMFs. Conclusions. In dynamical environments such as W43-MM2&MM3, the high-mass end of the CMF appears to be rooted in the cloud structure, which is at high column density and surrounds cores. This connection stems from the fact that cores and their immediate surroundings are both determined and shaped by the cloud formation process, the current evolutionary state of the cloud, and, more broadly, the star formation history. The CMF may evolve from Salpeter to top-heavy throughout the star formation process from the quiescent to the burst phase. This scenario raises the question of if the CMF might revert again to Salpeter as the cloud approaches the end of its star formation stage, a hypothesis that remains to be tested. 
    more » « less
    Free, publicly-accessible full text available June 1, 2024
  3. The oscillatory dynamics of nanoelectromechanical systems (NEMS) is at the heart of many emerging applications in nanotechnology. For common NEMS, such as beams and strings, the oscillatory dynamics is formulated using a dissipationless wave equation derived from elasticity. Under a harmonic ansatz, the wave equation gives an undamped free vibration equation; solving this equation with the proper boundary conditions provides the undamped eigenfunctions with the familiar standing wave patterns. Any harmonically driven solution is expressible in terms of these undamped eigenfunctions. Here, we show that this formalism becomes inconvenient as dissipation increases. To this end, we experimentally map out the position- and frequency-dependent oscillatory motion of a NEMS string resonator driven linearly by a non-symmetric force at one end at different dissipation limits. At low dissipation (high Q factor), we observe sharp resonances with standing wave patterns that closely match the eigenfunctions of an undamped string. With a slight increase in dissipation, the standing wave patterns become lost, and waves begin to propagate along the nanostructure. At large dissipation (low Q factor), these propagating waves become strongly attenuated and display little, if any, resemblance to the undamped string eigenfunctions. A more efficient and intuitive description of the oscillatory dynamics of a NEMS resonator can be obtained by superposition of waves propagating along the nanostructure. 
    more » « less
  4. Abstract

    Recently, the region surrounding eHWC J1842−035 has been studied extensively by γ-ray observatories due to its extended emission reaching up to a few hundred TeV and potential as a hadronic accelerator. In this work, we use 1910 days of cumulative data from the High Altitude Water Cherenkov (HAWC) observatory to carry out a dedicated systematic source search of the eHWC J1842−035 region. During the search, we found three sources in the region, namely, HAWC J1844−034, HAWC J1843−032, and HAWC J1846−025. We have identified HAWC J1844−034 as the extended source that emits photons with energies up to 175 TeV. We compute the spectrum for HAWC J1844−034, and by comparing with the observational results from other experiments, we have identified HESS J1843−033, LHAASO J1843−0338, and TASG J1844−038 as very-high-energy γ-ray sources with a matching origin. Also, we present and use the multiwavelength data to fit the hadronic and leptonic particle spectra. We have identified four pulsar candidates in the nearby region in which PSR J1844−0346 is found to be the most likely candidate due to its proximity to HAWC J1844−034 and the computed energy budget. We have also found SNR G28.6−0.1 as a potential counterpart source of HAWC J1844−034 for which both leptonic and hadronic scenarios are feasible.

     
    more » « less
    Free, publicly-accessible full text available September 1, 2024
  5. We present the discovery of an Earth-mass planet (Mbsini= 1.26 ± 0.21M) on a 15.6 d orbit of a relatively nearby (d ~9.6 pc) and low-mass (0.167 ± 0.011M) M5.0 V star, Wolf 1069. Sitting at a separation of 0.0672 ± 0.0014 au away from the host star puts Wolf 1069 b in the habitable zone (HZ), receiving an incident flux ofS= 0.652 ± 0.029S. The planetary signal was detected using telluric-corrected radial-velocity (RV) data from the CARMENES spectrograph, amounting to a total of 262 spectroscopic observations covering almost four years. There are additional long-period signals in the RVs, one of which we attribute to the stellar rotation period. This is possible thanks to our photometric analysis including new, well-sampled monitoring campaigns undergone with the OSN and TJO facilities that supplement archival photometry (i.e., from MEarth and SuperWASP), and this yielded an updated rotational period range ofProt= 150–170 d, with a likely value at 169.3−3.6+3.7. The stellar activity indicators provided by the CARMENES spectra likewise demonstrate evidence for the slow rotation period, though not as accurately due to possible factors such as signal aliasing or spot evolution. Our detectability limits indicate that additional planets more massive than one Earth mass with orbital periods of less than 10 days can be ruled out, suggesting that perhaps Wolf 1069 b had a violent formation history. This planet is also the sixth closest Earth-mass planet situated in the conservative HZ, after Proxima Centauri b, GJ 1061 d, Teegarden’s Star c, and GJ 1002 b and c. Despite not transiting, Wolf 1069 b is nonetheless a very promising target for future three-dimensional climate models to investigate various habitability cases as well as for sub-m s−1RV campaigns to search for potential inner sub-Earth-mass planets in order to test planet formation theories.

     
    more » « less
  6. ABSTRACT

    PG 1553 + 113 is one of the few blazars with a convincing quasi-periodic emission in the gamma-ray band. The source is also a very high energy (VHE; >100 GeV) gamma-ray emitter. To better understand its properties and identify the underlying physical processes driving its variability, the MAGIC Collaboration initiated a multiyear, multiwavelength monitoring campaign in 2015 involving the OVRO 40-m and Medicina radio telescopes, REM, KVA, and the MAGIC telescopes, Swift and Fermi satellites, and the WEBT network. The analysis presented in this paper uses data until 2017 and focuses on the characterization of the variability. The gamma-ray data show a (hint of a) periodic signal compatible with literature, but the X-ray and VHE gamma-ray data do not show statistical evidence for a periodic signal. In other bands, the data are compatible with the gamma-ray period, but with a relatively high p-value. The complex connection between the low- and high-energy emission and the non-monochromatic modulation and changes in flux suggests that a simple one-zone model is unable to explain all the variability. Instead, a model including a periodic component along with multiple emission zones is required.

     
    more » « less
  7. Abstract We present the results of dark matter (DM) searches in a sample of 31 dwarf irregular (dIrr) galaxies within the field of view of the HAWC Observatory. dIrr galaxies are DM-dominated objects in which astrophysical gamma-ray emission is estimated to be negligible with respect to the secondary gamma-ray flux expected by annihilation or decay of weakly interacting massive particles (WIMPs). While we do not see any statistically significant DM signal in dIrr galaxies, we present the exclusion limits (95% C.L.) for annihilation cross section and decay lifetime for WIMP candidates with masses between 1 and 100 TeV. Exclusion limits from dIrr galaxies are relevant and complementary to benchmark dwarf Spheroidal (dSph) galaxies. In fact, dIrr galaxies are targets kinematically different from benchmark dSph, preserving the footprints of different evolution histories. We compare the limits from dIrr galaxies to those from ultrafaint and classical dSph galaxies previously observed with HAWC. We find that the constraints are comparable to the limits from classical dSph galaxies and ∼2 orders of magnitude weaker than the ultrafaint dSph limits. 
    more » « less
  8. Abstract Extended very-high-energy (VHE; 0.1–100 TeV) γ -ray emission has been observed around several middle-aged pulsars and referred to as “TeV halos.” Their formation mechanism remains under debate. It is also unknown whether they are ubiquitous or related to a certain subgroup of pulsars. With 2321 days of observation, the High Altitude Water Cherenkov (HAWC) Gamma-Ray Observatory detected VHE γ -ray emission at the location of the radio-quiet pulsar PSR J0359+5414 with >6 σ significance. By performing likelihood tests with different spectral and spatial models and comparing the TeV spectrum with multiwavelength observations of nearby sources, we show that this excess is consistent with a TeV halo associated with PSR J0359+5414, though future observation of HAWC and multiwavelength follow-ups are needed to confirm this nature. This new halo candidate is located in a noncrowded region in the outer galaxy. It shares similar properties to the other halos but its pulsar is younger and radio-quiet. Our observation implies that TeV halos could commonly exist around pulsars and their formation does not depend on the configuration of the pulsar magnetosphere. 
    more » « less